归并排序(Merge sort)是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
当有n个记录时,需进行logn轮归并排序,每一轮归并,其比较次数不超过n,元素移动次数都是n,因此,归并排序的时间复杂度为O(nlogn)。归并排序时需要和待排序记录个数相等的存储空间,所以空间复杂度为O(n)。
归并排序适用于数据量大,并且对稳定性有要求的场景。
示例代码:
package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
slice := generateSlice(20)
fmt.Println("\n--- Unsorted --- \n\n", slice)
fmt.Println("\n--- Sorted ---\n\n", mergeSort(slice), "\n")
}
// Generates a slice of size, size filled with random numbers
func generateSlice(size int) []int {
slice := make([]int, size, size)
rand.Seed(time.Now().UnixNano())
for i := 0; i < size; i++ {
slice[i] = rand.Intn(999) - rand.Intn(999)
}
return slice
}
func mergeSort(items []int) []int {
var num = len(items)
if num == 1 {
return items
}
middle := int(num / 2)
var (
left = make([]int, middle)
right = make([]int, num-middle)
)
for i := 0; i < num; i++ {
if i < middle {
left[i] = items[i]
} else {
right[i-middle] = items[i]
}
}
return merge(mergeSort(left), mergeSort(right))
}
func merge(left, right []int) (result []int) {
result = make([]int, len(left) + len(right))
i := 0
for len(left) > 0 && len(right) > 0 {
if left[0] < right[0] {
result[i] = left[0]
left = left[1:]
} else {
result[i] = right[0]
right = right[1:]
}
i++
}
for j := 0; j < len(left); j++ {
result[i] = left[j]
i++
}
for j := 0; j < len(right); j++ {
result[i] = right[j]
i++
}
return
}
输出:
--- Unsorted ---
[-356 328 705 -199 -373 108 -377 -362 128 98 1 -9 -500 -607 387 12 210 -600 -351 432]
--- Sorted ---
[-607 -600 -500 -377 -373 -362 -356 -351 -199 -9 1 12 98 108 128 210 328 387 432 705]